Эвольвентная зубчатая передача Классификация зубчатых передач Конические зубчатые передачи Сложные зубчатые механизмы  Кулачковые механизмы Волновые передачи Динамика манипуляторов промышленных роботов Попробуйте походите вот тут и сравните диплом в екатеринбурге с другими.

Теория машин и механизмов Примеры выполнения заданий

Сложные зубчатые механизмы. Многопоточные и планетарные механизмы. Кинематика рядного зубчатого механизма. Формула Виллиса для планетарных механизмов. Кинематическое исследование типовых планетарных механизмов графическим и аналитическим методами.

 Сложные зубчатые механизмы.

 Многопоточные и планетарные механизмы.

 Сложными зубчатыми механизмами называются механизмы с зубчатыми передачами с числом зубчатых колес больше двух. Это могут быть механизмы с оригинальными структурными схемами или механизмы, образованные последовательным и (или) параллельным соединением простейших типовых зубчатых механизмов. 

Механизмы, в которых кинематические цепи образуют один или несколько замкнутых контуров и в которых входной поток механической мощности в процессе передачи и преобразования делится на несколько потоков, а затем суммируется на выходном звене, называются многопоточными механизмами. Распределение передаваемых усилий по нескольким кинематическим парам уменьшает нагрузку на элементы пар и позволяет существенно уменьшать габаритные размеры и массу механизмов. Многозонный контакт звеньев механизма существенно увеличивает жесткость механизма, а за счет осреднения ошибок и зазоров, уменьшает мертвый ход и кинематическую погрешность механизма. Однако, за счет образования в структуре механизма внутренних контуров, число избыточных или пассивных связей в механизме увеличивается. Поэтому при изготовлении и сборке механизма необходимо либо повышать точность деталей, либо увеличивать зазоры в кинематических парах.

Сложные зубчатые механизмы, в которых ось хотя бы одного колеса подвижна, называются планетарными механизмами. К типовым планетарным механизмам относятся:

однорядный планетарный механизм;

Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.

двухрядный планетарный механизм с одним внешним и одним внутренним зацеплением;

двухрядный планетарный механизм с двумя внешними зацеплениями;

двухрядный планетарный механизм с двумя внутренними зацеплениями.

Элементы планетарного механизма имеют специальные названия:

зубчатое колесо с внешними зубьями, расположенное в центре механизма называется «солнечным»;

 колесо с внутренними зубьями называют «короной» или «эпициклом»;

колеса, оси которых подвижны, называют «сателлитами»;

подвижное звено, на котором установлены сателлиты, называют «водилом». Звено водила принято обозначать не цифрой, а латинской буквой h.

В таблице 15.1 приведены структурные схемы типовых планетарных механизмов, а также диапазоны рекомендуемых передаточных отношений и ориентировочные значения КПД при этих передаточных отношениях.

 Кинематика рядного зубчатого механизма.

  Рядным зубчатым механизмом называется сложный зубчатый механизм с неподвижными осями колес, образованный последовательным соединением нескольких простых зубчатых механизмов. Рассмотрим кинематику рядного механизма составленного из двух зубчатых передач: одной внешнего зацепления и одной внутреннего зацепления. Схема механизма изображена на рис. 15.1.

 Напоминание: Для вращательного движения твердого тела относительно оси проходящей через точку А. Примем для размеров масштаб ml, мм/м, а для линейных скоростей – масштаб  mV, мм/м×с-1.  Угловая скорость звена i равна

 Таким образом при графическом кинематическом анализе угловая скорость

 звена равна произведению тангенса угла наклона прямой распределения линейных скоростей на отношение масштабов длин и скоростей.

  Аналитическое исследование кинематики рядного механизма.

Из основной теоремы зацепления, для первой пары зубчатых колес с внешним зацеплением, можно записать

  w1/w2 = - rw2/rw1 = - z2/z1;

  для второй пары зубчатых колес с внутренним зацеплением

 w2/w3 = rw4/rw3 = z4/z3 .

Передаточное отношение механизма в целом будет равно

 u13 = w1/w3 = (w1/w2) × (w2/w3) = u12 × u23= - (z2×z4)/(z1×z3).

Передаточное отношение сложного рядного зубчатого, образованного из нескольких соединенных последовательно простых зубчатых механизмов равно произведению передаточных отношений этих механизмов.

Графическое исследование кинематики рядного механизма

Графическое определение передаточного отношения. В системе координат ri0V построим треугольники распределения линейных скоростей звеньев.

Кинематическое исследование пространственных планетарных механизмов методом планов угловых скоростей. Рассмотрим этот метод исследования на примере планетарного механизма конического дифференциала заднего моста автомобиля.

Обеспечение соосности входного и выходного валов. Для этого необходимо чтобы межосевое расстояние в передаче внешнего зацепления (первый ряд) равнялось межосевому расстоянию в передаче внутреннего зацепления (второй ряд), то есть awI = awII ; awI= rw1 + rw2 = r1 + r2; awII = rw4 - rw3 = r4 - r3 .

Конфигурационное пространство голономной механической системы; число её степеней свободы. Обобщённые координаты и скорости; требования к параметризации механической системы. Выражение скорости точки системы через обобщённые скорости. Возможные перемещения; условия на их компоненты, налагаемые связями. Выражение возможных перемещений через вариации обобщённых координат.
Эвольвентная зубчатая передача