Эвольвентная зубчатая передача Классификация зубчатых передач Конические зубчатые передачи Сложные зубчатые механизмы  Кулачковые механизмы Волновые передачи Динамика манипуляторов промышленных роботов

Теория машин и механизмов Примеры выполнения заданий

Волновые передачи. Назначение и области применения. Преимущества и недостатки волновых передач. Классификация типовых структурных схем ВЗП. Структура волновой зубчатой передачи. Кинематика волнового механизма. Расчет геометрии волнового зубчатого зацепления. 

 Волновой передачей называется зубчатый или фрикционный механизм, предназначенный для передачи и преобразования движения (обычно вращательного), в котором движение преобразуется за счет волновой деформации венца гибкого колеса специальным звеном (узлом) – генератором волн. Основными элементами дифференциального волнового механизма являются: входной или быстроходный вал с генератором волн, гибкое колесо с муфтой, соединяющей его с первым тихоходным валом, жесткое колесо, соединенное со вторым тихоходным валом, корпус.

Существует большое количество конструкций волновых механизмов. Обычно эти механизмы преобразуют входное вращательное движение в выходное вращательное или поступательное. Волновые механизмы можно рассматривать как одну из разновидностей многопоточных планетарных механизмов, так как они обладают многозонным, а в случае зубчатого механизма, и многопарным контактом выходного звена с гибким колесом. Многозонный контакт обеспечивается за счет формы генератора волн (кулачок чаще с двумя, редко с тремя выступами), многопарный – за счет податливости зубчатого венца гибкого колеса. Такое сочетание позволяет волновым механизмам передавать значительные нагрузки при малых габаритах. Податливость зубчатого венца обеспечивает достаточно равномерное распределение нагрузки по зубьям, находящимся в зоне зацепления. При номинальных нагрузках процент зубьев находящихся в зацеплении составляет 15-25% от общего их числа. Поэтому в волновых передачах применяется мелкомодульное зацепление, а числа зубьев колес лежат в пределах от 100 до 600. Зона зацепления в волновой зубчатой передаче совпадает с вершиной волны деформации. По числу зон или волн передачи делятся на одноволновые, двухволновые и так далее. Передачи с числом волн более трех применяются редко. Распределение передаваемых усилий по нескольким зонам уменьшает нагрузку на элементы пар и позволяет существенно уменьшать габаритные размеры и массу механизмов. Многозонный и многопарный контакт звеньев существенно увеличивает жесткость механизма, а за счет осреднения ошибок и зазоров, уменьшает мертвый ход и кинематическую погрешность механизма. Поэтому волновые механизмы обладают высокой кинематической точностью и, несмотря на наличие гибкого элемента, достаточно высокой жесткостью. Образующиеся в структуре волнового механизма внутренние контуры, увеличивают теоретическое число избыточных или пассивных связей в механизме. Однако гибкое колесо за счет податливости компенсирует ряд возникающих перекосов. Поэтому при изготовлении и сборке волновых механизмов число необходимых компенсационных развязок меньше чем в аналогичных механизмах с жесткими звеньями. Порядок решения статически неопределимой системы. Решаем статическую задачу (записываем уравнения статики) и определяем степень статической неопределённости.

 Гибкое колесо обеспечивает волновым передачам возможность передачи движения через герметичную стенку, которая разделяет две среды (например, космический аппарат и открытый космос). При этом гибкое колесо выполняется как элемент герметичной стенки, входной вал и генератор волн располагаются по одну сторону стенки (внутри космического аппарата), а выходное звено – по другую (в космическом пространстве). Схема герметичной волновой передачи приведена на рис. 18.1.

Среда космического Герметичная стенка Космическое 

аппарата пространство

  Преимущества и недостатки волновых передач.

Преимущества:

Возможность реализации в одной ступени при двухволновом генераторе волн больших передаточных отношений в диапазоне от 40 до 300.

Высокая нагрузочная способность при относительно малых габаритах и массе.

Малый мертвый ход и высокая кинематическая точность.

Возможность передачи движения через герметичную перегородку.

Малый приведенный к входному валу момент инерции (для механизмов с дисковыми генераторами волн).

Недостатки:

Меньшая приведенная к выходному валу крутильная жесткость.

Сложная технология изготовления гибких зубчатых колес.

  Структура волновой зубчатой передачи.

 Рассмотрим одноволновую зубчатую передачу с генератором волн, который образует с гибким колесом пару скольжения. Волновая передача не может рассматриваться в рамках ранее принятых нами допущений, так как в ней содержится гибкое звено. Поэтому необходимо определить место гибкого элемента в структуре механизма. Гибкая связь обычно допускает по действием силовых воздействий определенные относительные перемещения соединяемых звеньев. Поэтому ее отнесем к отношениям между элементами или к упругой кинематической паре. Зубчатое колесо представляет собой замкнутую систему зубьев. В каждый рассматриваемый момент в контакте в высшей паре могут находится один или несколько зубьев. Так как зубчатые колеса – звенья, то зубья – элементы высшей кинематической пары. Поэтому многопарный контакт между зубчатыми колесами является контактом между элементами одной кинематической пары. Пассивные или избыточные связи, возникающие в этом контакте, относятся к внутренним связям кинематической пары и в структурном анализе на уровне звеньев не учитываются. Поэтому считаем, что в зацеплении находится один зуб. Структурная схема механизма с остановленным жестким колесом при гибком соединении зуба с валом гибкого колеса может быть представлена следующем образом. 

 Волновая зубчатая передача с упругой муфтой – стаканом.

 Волновая зубчатая передача с волновой зубчатой муфтой.

Рассмотрим звенья и кинематические пары механизмов:

звенья:  0 – корпус с закрепленным на нем жестким колесом;

 1 – быстроходный вал с генератором волн;

 2 – зуб гибкого колеса;

 3 – вал гибкого колеса;

  кинематические пары:

А1в и Е1в - одноподвижные вращательные пары;

В2н – двухподвижная низшая пара (рис.18.5). Эта пара образована зубом гибкого колеса и кулачком генератора волн. Пара допускает два независимых движения зуба относительно кулачка: по касательной к профилю кулачка (по оси х) и в осевом направлении (по оси у). Вращение зуба вокруг оси у и перемещения его по оси z не являются независимыми и определяются формой профиля кулачка.

D3упр – двухподвижный упругий шарнир (рис.18.6). Данная кинематическая пара должна обеспечивать зубу гибкого колеса 2 возможность выполнять движения деформации относительно вала 3, но относительные движения в тангенциальном направлении (по оси х) запрещены. Аналогичные движения обеспечивает пара D3муф в зубчатом соединении в волновой зубчатой муфте и пара С3вп в волновом зубчатом зацеплении (рис.18.7). Оси координат в зубчатой паре направляются так: ось z - по касательной к профилям в точке контакта, ось х – по нормали к профилям и ось у – по линии контакта зубьев.

Подвижность механизма подсчитывается следующим образом

 n = 3; p1 = 2; p2 = 1; p3 = 2;

  Wпр = 6×3 - 5×2 - 4×1 - 3×2 = 18 – 20 = -2.

В механизме имеется одна местная подвижность Wм = 1 – подвижность зуба гибкого колеса в осевом направлении (по оси у). Заданная или основная подвижность механизма W0 = 1. Число избыточных связей в механизме равно

 qпр = W0 + Wм + Wпр = 1+1- (-2) = 4.

Эти избыточные или пассивные связи определяют требование параллельности осей пар В,С,D и Е оси пары А.

Движение всех звеньев волнового механизма осуществляется в параллельных плоскостях. Поэтому механизм волновой зубчатой передачи можно рассматривать как плоский. В этом случае

 n = 3; p1 = 3; p2 = 2;

 Wпл = 3×3 - 2×3 - 1×2 = 9 – 8 = 1.

 Wм = 0; W0 = 1;  qпл = W0 + Wм + Wпл = 1-1 = 0.

Синтез кулачкового механизма. Этапы синтеза. При синтезе кулачкового механизма, как и при синтезе любого механизма, решается ряд задач из которых в курсе ТММ рассматриваются две: выбор структурной схемы и определение основных размеров звеньев механизма (включая профиль кулачка).

Выбор радиуса ролика (скругления рабочего участка толкателя). При выборе радиуса ролика руководствуются следующими соображениями: Ролик является простой деталью, процесс обработки которой несложен (вытачивается, затем термообрабатывается и шлифуется). Поэтому на его поверхности можно обеспечить высокую контактную прочность. В кулачке, из-за сложной конфигурации рабочей поверхности, это обеспечить сложнее.

 Кинематика волнового механизма. Рассмотрим идеальную фрикционную волновую передачу. В этой передачи контактирующие поверхности гибкого и жесткого колес будут соответствовать начальным поверхностям зубчатых колес. Толщину гибкого колеса принимаем бесконечно малой. Тогда срединная поверхность гибкого колеса совпадает с его начальной поверхностью. Считаем, что срединная поверхность гибкого колеса нерастяжима, то есть длина ее до и после деформирования колеса генератором волн остается неизменной.

Промышленные роботы и манипуляторы. Назначение и области применения. Классификация промышленных роботов. Принципиальное устройство промышленного робота. Основные понятия и определения. - Структура манипуляторов. Геометро-кинематические характеристики. Промышленный робот – автоматическая машина, состоящая из манипулятора и устройства программного управления его движением, предназначенная для замены человека при выполнении основных и вспомогательных операций в производственных процессах. Манипулятор – совокупность пространственного рычажного механизма и системы приводов, осуществляющая под управлением программируемого автоматического устройства или человека-оператора действия (манипуляции), аналогичные действиям руки человека.

Даламберовы силы инерции. Принцип Даламбера и уравнения динамического равновесия для системы материальных точек; метод кинетостатики. Главный вектор и главный момент даламберовых сил инерции. Принцип Даламбера и уравнения динамического равновесия для твёрдого тела. Принцип Даламбера - Лагранжа и общее уравнение динамики. Решение задач динамики при помощи принципа Даламбера - Лагранжа.
Эвольвентная зубчатая передача