Как купить диплом уфа.
Эвольвентная зубчатая передача Классификация зубчатых передач Конические зубчатые передачи Сложные зубчатые механизмы  Кулачковые механизмы Волновые передачи Динамика манипуляторов промышленных роботов

Теория машин и механизмов Примеры выполнения заданий

Динамика манипуляторов промышленных роботов.

 Силовой расчет манипулятора.

 Из большого разнообразия задач динамики манипуляторов рассмотрим две: силовой расчет и расчет быстродействия ПР. При силовом расчете манипуляторов решается задачи по определению внешних силовых управляющих воздействий, обеспечивающих требуемый закон движения механизма, и по расчету реакций в кинематических парах. Первую часть часто называют задачей синтеза управления . При силовом расчете обычно применяется метод кинетостатики, основанный на принципе Д’Аламбера. По этому методу к внешним силам и моментам, приложенным к звеньям механизма, добавляются расчетные силы инерции, которые обеспечивают силовую уравновешенность системы и позволяют рассматривать подвижную систему в квазистатическом равновесии, то есть, как условно неподвижную. Силовой расчет выполняется при заданной полезной нагрузке , известных законах движения звеньев  и (из предварительного кинематического расчета), известных инерционных характеристиках звеньев: массах звеньев mi и их моментах инерции Isi. По этим данным определяются главные вектора и главные моменты сил инерции для каждого из звеньев механизма. Для открытой кинематической цепи решение начинаем с выходного звена – схвата. Отброшенные связи звена n со звеном n -1 и выходным валом привода звена n заменяем реакциями  и и составляем кинетостатические векторные уравнения равновесия сил и моментов для звена n (Рис.20.4): Упрощенные и условные изображения крепежных деталей

 

 

где  - вектор момента в кинематической паре ( проекция этого вектора на ось z является движущим моментом привода в КП , то есть ).

  Проецируя векторные уравнения на оси координат, получим систему шести алгебраических уравнений откуда определим шесть неизвестных

  

 Далее рассматривается равновесие звена n-1 . При этом в месте его присоединения к звену n прикладываются реакции со стороны звена n

 ,

равные по величине и противоположные по направлению реакциям, определенным на предыдущем этапе расчета. Так последовательно составляются уравнения силового равновесия для всех n звеньев механизма. Из решения полученной системы 6n уравнений определяются реакции в кинематических парах, движущие силы и моменты.

 Расчет быстродействия промышленного робота.

 Время выполнения роботом цикла перемещений детали во многом определяет производительность всего роботизированного комплекса. Поэтому требования к быстродействию робота обычно достаточно высокие. Время выполнения роботом технологической операции обусловлено законами изменения внешних сил (движущих и сопротивления) и инертностью звеньев механизма. Закон изменения управляющих сил зависит от типа используемого привода и от вида системы управления. Существуют роботы с гидравлическими, пневматическими, электрическими и комбинированными приводами. В них применяются цикловые, позиционные или контурные системы управления. Рассмотрим расчет быстродействия одного из приводов промышленного робота с цикловой системой управления. При цикловой системе управления относительные перемещения звеньев ограничиваются передвижными упорами и концевыми выключателями.

 На рис. 20.5 изображена кинематическая схема трехподвижного манипулятора ПР (1,2,3 – подвижные звенья, 0 – неподвижное звено). Здесь же приведена циклограмма настройки командоаппарата (сплошные линии) и циклограмма работы ПР (пунктирные линии). Общее время рабочего цикла Тц состоит из времени выстоя в заданных положениях ( на циклограмме выстой показан прямыми параллельными горизонтальной оси t ) и времени относительных перемещений звеньев из одного заданного положения в другое tпх и обратно tох ( наклоные прямые на диаграммах ). Время выстоя обычно задано условиями технологического процесса. Время выполнения роботом движений определяется динамическими характеристиками приводов и манипулятора – движущими силами и силами сопротивления, массами и моментами инерции звеньев.

 Рассмотрим работу пневмопривода перемещения руки манипулятора (рис.20.5). По сигналу от командоаппарата в правую полость цилиндра подается сжатый воздух, который действует на поршень с силой Fд3 = p×Sп , где р- давление воздуха, - активная площадь поршня. Под действием этой силы поршень и рука 3 перемещаются влево с постоянным ускорением и с возрастающей скоростью V32 (рис.20.6а). Ограничение хода поршня может осуществляться либо жестким упором без демпфера, либо упором с демпфером.

 При остановке на упоре без демпфера , скорость звена 3 должна мгновенно уменьшится с некоторого конечного значения до нуля. При таком изменении скорости ускорение a32 Þ - ¥ . Такая остановка звена называется жестким ударом. Она сопровождается большими динамическими нагрузками на звенья механизма. Так как реальный манипулятор представляет собой упруго-инерционную систему, то эти нагрузки вызовут отскок звена 3 от упора, а также колебания всего механизма. Схват будет совершать колебания относительно заданного конечного положения. Время затухания этого процесса Dt (рис.20.6а) значительно снижает быстродействие ПР.

 Уменьшить эти колебания или вообще исключить их можно, обеспечив безударный останов

 V32n= 0, a32n = 0;

где V32n, a32n - относительная скорость и относительное ускорение звеньев в момент останова. Однако это осуществимо только в регулируемом приводе при контурном управлении. Кроме того при безударном останове в конце хода относительная скорость близка к нулю, поэтому время перемещения схвата в требуемое положение значительно возрастает. Компромиссным решением является останов с мягким ударом, при котором относительная скорость в конце хода V32n= 0, а ускорение ограничено некоторым допустимым значением a32n £ [a ]. В механизмах с цикловым управлением  режим движения с мягким ударом обеспечивается установкой упоров с демпферами, гасящими кинетическую энергию руки. Расчет демпфера ведется из условия ASn=0, которое обеспечивается равенством за цикл движения работы движущей силы AFд3 и работы силы сопротивления демпфера АFc (рис. 20.6б):

 AFд3 = -АFc или Fд3 × (H32 – hд) = - Fc× hд .

 В этом выражении неизвестны две величины Fc и hд , одной из них задаются , вторую – рассчитывают.

  Уравновешивание манипуляторов.

 В большинстве кинематических схем манипуляторов приводы восприниамают статические нагрузки от сил веса звеньев. Это требует значительного увеличения мощностей двигателей приводов и моментов тормозных устройств. Для борьбы с этим используют три метода:

Используют кинематические схемы манипуляторов, в которых силы веса звеньев воспринимаются подшипниками кинематических пар. На мощность приводов и тормозных устройств при таком решении силы веса оказывают влияние только через силы трения в парах. В качестве примера можно привести кинематическую схема робота SCARA (рис. 20.7). Недостатком этого метода являются большие осевые нагрузки в подшипниках.

Уравновешивание звеньев манипулятора с помощью корректировки их массы. При этом центр масс звена с помощью корректирующих масс смещается в центр кинематической пары ( рис. 20.8 ). Недостатком этого метода является значительное увеличение массы манипулятора и моментов инерции его звеньев.

Уравновешивание сил веса звеньев манипулятора с помощью упругих разгружающих устройств – пружинных разгружателей или уравновешивателей. Эти устройства не позволяют обеспечить полную разгрузку приводов от действия сил веса на всем относительном перемещении звеньев. Поэтому конструкция этих устройств включает кулачковые или рычажные механизмы, которые согласуют упругую характеристику пружины с характеристикой уравновешиваемых сил веса звеньев. На рис. 20.9 показана схема примышленного робота в котором привод вертикального перемещения руки снабжен механизмом для силовой разгрузки, состоящим из пружины и кулачкового механизма с профилем выполненным по спирали Архимеда.

  Точность манипуляторов ПР.

 Точность манипуляторов определяется погрешностями позиционирования характеристической точки схвата (точка М) и погрешностями угловой ориентации схвата. Погрешности позиционирования определяются технологическими отклонениями размеров звеньев манипулятора, зазорами в кинематических парах манипулятора и механизмов приводов, деформациями (упругими и температурными) звеньев, а также погрешностями системы управления и датчиков обратной связи. В паспортных данных манипуляторов указывается максимально допустимое отклонение центра схвата манипулятора точки М от ее номинального расположения на множестве возможных конфигураций механизма. В результате погрешностей точка М описывает в пространстве некоторый эллипсоид, который называется эллипсоидом отклонений (рис. 20.10).

 Литература

Силовой расчет, уравновешивание, проектирование механизмов и механика манипуляторов: Учебное пособие для студентов смешанной формы обучения / И.Н.Чернышева, А.К.Мусатов,Н.А.Глухов и др.; Под ред. А.К.Мусатова. – М.: Изд-во МГТУ, 1990. – 80с., ил.

Механика промышленных роботов: Учеб. пособие для втузов: В 3-х кн. / под ред. К.В.Фролова, Е.И.Воробьева. – М.: Высш.шк., 1988.

Р.Пол «Моделирование, планирование траекторий и управление движением робота – манипулятора» - М.: Наука, 1976.

Структура манипуляторов. Геометро-кинематические характеристики. Формула строения - математическая запись структурной схемы манипулятора, содержащая информацию о числе его подвижностей, виде кинематических пар и их ориентации относительно осей базовой системы координат (системы, связанной с неподвижным звеном).

Задачи механики манипуляторов. Кинематический анализ механизма манипулятора. Динамика манипуляторов промышленных роботов. Уравновешивание манипуляторов. Кинетостатический расчет манипуляторов. Расчет быстродействия привода.

Задачи динамики механизмов с учетом податливости звеньев (с упругими связями). Виды механических колебаний. Динамические модели механизмов с упругими связями (условия и допущения). Двухмассовая модель привода с упругими связями. Определение закона движения динамической модели. Упругие вынужденные колебания в системе. Определение собственных частот колебаний системы. Определение форм колебаний. Моделирование динамических процессов в приводе с упругими связями (влияние жесткости звеньев привода на неравномерность движения, момент в приводе и динамическую ошибку).

Определение закона движения динамической модели

Общее уравнение динамики и уравнения динамического равновесия механической системы в обобщённых координатах. Уравнения Лагранжа второго рода: вывод и методика применения. Обобщённые импульсы. Порядок решения задач динамики голономных механических систем при помощи компьютера.
Эвольвентная зубчатая передача