Лабораторные работы Взаимодействие между молекулами Диффузия Молекулярная физика Структура твердых тел Кинетическая теория газа Измерение вакуума Помощь 24 часа: w203 садится аккумулятор звоните, приедем!

Молекулярная физика и основы термодинамики Лабораторные работы

Характер теплового движения молекул в разных состояниях. Средние энергии молекул в разных фазах. Распределение молекул по скоростям.

 Как известно молекулы и атомы в веществе постоянно находятся в движении, которое имеет случайный, хаотический характер. Тем не менее в каждом агрегатном состоянии имеются характерные особенности этого движения, которые во многом определяют свойства различных состояний. Это связано с тем, что межмолекулярные силы взаимодействия стремятся сблизить молекулы, а тепловое хаотичное движение препятствует этому и такие две тенденции в разных агрегатных состояниях дают, значительно отличающиеся, вклады в характер движения молекул. Для количественного анализа влияния различных вкладов, обычно рассматривают величину полной средней энергии молекулы и вклад в эту энергию кинетической и потенциальной составляющих.

В газах среднее расстояние между молекулами больше их размеров, силы притяжения малы, а интенсивность движения значительна, что не позволяет молекулам объединиться на длительное время, а при отсутствии сосуда молекулы стремятся заполнить все доступное пространство. В газах потенциальная энергия взаимодействия отрицательна, кинетическая энергия имеет большую величину, поэтому полная энергия молекулы положительна и при расширении молекулярная система может совершать работу над внешними системами. Вследствие этого, молекулы распределены в пространстве равномерно, большее время находятся на больших расстояниях (Рис.4а) и двигаются равномерно и прямолинейно без взаимодействия. Взаимодейтвие молекул имеет кратковременный характер и происходит только при их столкновении, что приводит к значительному изменению траектории движения (Рис.5).

В твердых телах среднее расстояние между молекулами сравнимо с их размерами, поэтому силы притяжения очень велики и даже сравнительно большая интенсивность движения не позволяет молекулам разойтись на большие расстояния. В данном случае отрицательная потенциальная энергия взаимодействия много больше кинетической энергии, поэтому полная энергия молекулы также отрицательна и для разрушения твердого тела необходимо совершать значительную работу. Молекулы в твердом теле располагаются на строго определенных расстояниях друг от друга (Рис.4г) и совершают колебательные движения около некоторых средних положений, называемых узлами кристаллической решетки (Рис.5).

В жидкостях расстояние между молекулами сравнимо с их размерами, силы притяжения велики, но интенсивность теплового движения тоже большая, что позволяет молекулам по истечении некоторого времени отойти друг от друга на большие расстояния. В жидкостях отрицательная потенциальная энергия взаимодействия сравнима по величине с кинетической энергией, поэтому полная энергия молекулы близка к нулю, что позволяет жидкости легко деформироваться и без разъединения занимать доступный объем под действием даже слабых внешних сил. Молекулы в жидкости, находятся в среднем на определенных, близких друг от друга расстояниях и совершают, похожие на колебания, движения около средних положений, которые также перемещаются хаотически в пространстве (Рис.5).

 


Рис. 5. Характер движения молекул в газах, жидкостях и твердых телах

 В результате взаимодействия между молекулами молекулярная система через некоторое время, называемым временем релаксации, приходит в равновесное состояние, характеризуемое: 1- определенным уравнением состояния, связывающим термодинамические параметры вещества; 2- определенной радиальной функцией, характеризующей распределения молекул в пространстве; 3- функцией Максвелла, характеризующей распределения молекул по скоростям (Рис.6).

 При каждом акте взаимодействия молекул друг с другом их скорости меняются и в результате через некоторое время устанавливается равновесное состояние, при котором число молекул dN, имеющих скорость в определенном диапазоне значений dVсохраняется постоянным и определяется функцией Максвелла F(V) согласно соотношениям

dN = N F(V)DV, F(V)=4pV2(m/2pkT)3/2 exp(-mV2/2kT). (8)

Вид этой функции показан на Рис.6, она существенно зависит от температуры Т и характеризуется наличием максимума, который указывает на наличие наиболее вероятной скорости Vвер. Как видно из графиков (Рис.6), в веществе имеются молекулы с любыми скоростями, но число молекул со скоростями в диапозоне dV около наивероятнейшей будет наибольшим. Максвелловское распределение молекул по скоростям характерно для всех агрегатных состояний, но время релаксации к такому распределению у них разное, это связано с различием времени взаимодействия молекул в разных фазах.


Рис. 6. Максвелловское распределение молекул по скоростям.


Определение коэффициента внутреннего трения жидкости