Машиностроительное черчение Теория машин и механизмов Сопромат 3D-моделирование КОМПАС-3D Энергетика Математика Физика

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Прочность и перемещения при центральном растяжении или сжатии

Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность

Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начнем с деформации растяжения (сжатия).

Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2,б).

Рис.1. Расчетная схема Рис.2. а) Растяжение и б) сжатие

Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня.

Рис.3. Модель растянутого стержня Рис.4. Связь напряжения и усилия

Тогда продольная сила Nz равная сумме проекции внутренних сил, действующих в данном поперечном сечении площадью F (рис. 4) очевидно будет равна

.

Это соотношение является уравнением равновесия статики, связывающим продольную силу Nz, и нормальное напряжение , которое в общем случае является функцией координат х и у и поэтому не может быть найдено из одного лишь 1 уравнения статики. Таким образом, задача определения напряжений даже в самом простом случае деформирования стержня (растяжении или сжатии) оказывается статически неопределимой.

Угловое ускорение тела характеризует скорость изменения угловой скорости во времени.

Угловое ускорение в данный момент равно первой производной по времени от угловой скорости или второй производной по времени от угла поворота.

Угловое ускорение обозначают буквой . Пусть за промежуток времени  угловая скорость изменилась на  со, тогда получим

Переходя к пределу, найдем угловое ускорение тела в данный момент времени

Или

За единицу углового ускорения принимают радиан за секунду в квадрате (рад/с2). Угловое ускорение , также как и , изображают скользящим вектором, направленным по оси вращения. Действительно,  представляет собой вектор, направленный по касательной к годографу вектора . Годографом вектора ω является прямая, совпадающая с осью вращения . Поэтому  направлен по оси 0z. Модуль вектора ε будет равен

.

Если ε>O одного знака с ω, то направление ε совпадает с направлением ω (рис. 49) и вращение тела  называется ускоренным.

Eсли ε < 0, а ω положительное, то направления ε и ω противоположны (рис. 49, б) и вращение тела называется замедленным.

Если ε = 0, то ω =0 и ω=const, т. е. тело вращается равномерно. При ε=const≠0, вращение тела называется равнопеременным.

Если ε=const≠0, то ω=ε=const . После интегрирования получим 

ω=εt+C

Постоянную интегрирования Сг найдем из начальных условий движения. Например, если при t=0,ω=ω0 , φ=φO, то С1 =ωO. Получим

ω=ωO + εt.

  Но, в свою очередь, ω=φ. Следовательно,

φ=ωO + εt, dφ=ωOdt+ εtdt.

 Интегрируя, получим

φ=ωO t+

Исходя из начальных условий движения, найдем С2 = φ0,


На главную