Машиностроительное черчение Теория машин и механизмов Сопромат 3D-моделирование КОМПАС-3D Энергетика Математика Физика

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе. В отличие от простых видов деформации, когда в поперечных сечениях стержня возникает лишь один силовой фактор, к которым относятся и изученные выше растяжение (сжатие) и чистый изгиб, прямой поперечный изгиб должен быть отнесен к сложным видам деформации. В поперечных сечениях стержня при поперечном изгибе возникают два силовых фактора: изгибающий момент Мх и поперечная сила Qy (рис. 7), напряженное состояние является упрощенным плоским, при котором в окрестности произвольно выбранных точек поперечного сечения действуют нормальные и касательные напряжения. Поэтому условие прочности для таких точек должно быть сформулировано на основе какого-либо уже известного критерия прочности.

Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям



Рис.7 Распределение нормальных и касательных напряжений по контуру сечения

Как определяется ускорение точки

 



Рис.8. К сравнительной оценке модулей напряжения

Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8:

так как

Тогда

откуда max <<max, а поскольку то доминирующим в этом случае будет расчет по нормальным напряжениям и условие прочности, например, для балки из пластичного материала, работающей на прямой изгиб, как и в случае чистого изгиба будет иметь вид:

Случай Эйлера

 Логранж Корейской

связанные с решением этого вопроса, привели исследователей к рассмотрению частных случаев движения тела вокруг неподвижной точки. Л. Эйлер рассмотрел случай, когда тело под действием силы тяжести вращается вокруг неподвижной точки, совпадающей с центром тяжести тела; Лагранж,— когда

А = В и центр тяжести тела лежит на оси симметрии, проходящей через неподвижную точку. С. В. Ковалевская исследовала случай, когда А=В = 2С, а центр тяжести тела находится в экваториальной плоскости эллипсоида инерции.Эти случаи проиллюстрированы на рис. 121, принадлежащем Н. Е. Жуковскому. Теория вращательного движения твердого тела вокруг неподвижной точки получила большое развитие в теории гироскопов, широко применяемых в современной технике.


На главную