Реактор ВВЭР-1000

Начертательная геометрия
Лабораторные работы по черчению
Энергетика
Реактор ВВЭР-1000
Математика
Решение задач контрольной работы
  • Найдите производные функций
  • Исследовать на экстремум функцию
  • Найти объем тела,
  • Найти частное решение уравнения
  • Написать первые три члена ряда
  • Интеграл Римана.
  • Вычисление определенного интеграла.
  • Приложение определенного интеграла
  • Объем тел в пространстве, площадь
    поверхности вращения
  • Найти область определения функции
  • Предел последовательности
  • Дифференцирование функции
    одной переменной
  • Понятие дифференциала
  • Применение производной к исследованию
    функций
  • Правило Лопиталя
  • Исследование функций и построение
    графиков
  • Интегральное исчисление функции
    одной переменной
  • Основные методы интегрирования
  • Метод интегрирования по частям
  • Интегрирование рациональных дробей
  • Интегрирование тригонометрических
    дробей
  • Определенный интеграл
  • Интегрирование по частям
  • Найти площадь фигуры,
    ограниченной линиями
  • Найти объем тора, образованного
    вращением круга
  • Классы САПР
  • Техническое обеспечение САПР
  • Основными устройствами ввода-вывода
  • Применение телекоммуникационных
    технологий в САПР
  • Обеспечение техники безопасности
  • НОРМАТИВНОЕ ОБЕСПЕЧЕНИЕ ПРОЕКТОВ
  • Использование системы «КОМПАС»
    в технологическом проектировании
  • Использование библиотек при
    технологическом проектировании
  • Система «ГЕКТОР АРМ ППР»
  • Работа с модулем выбора и привязки кранов
  • Работа с модулем проектирования
    складирования конструкций
  • Работа с модулем проектирования 
    бытового городка
  • Элемент выдавливания
  • Элемент вращения
  • Элемент кинематическая операция
  • Элемент по сечениям
  • ЭЛЕМЕНТЫ МАШИННОЙ  ГРАФИКИ
  • Геометрические построения в системе
    КОМПАС 3D V8
  • Практические задания к урокам
    инженерной графики
  • Построение контура детали
  • Нанесение размеров
  • Построение сопряжений.
  • Построение чертежей геометрических тел
  • Создание чертежа модели
  • Типы и классификация изображений. Разрезы
  • Построение модели и создание её чертежа
    с применением разрезов
  • Параметрический режим работы в КОМПАС-3D
  • Создание объёмной модели
  • Расширения файлов КОМПАС-3D
  • Основы работы с Компас 3D
  • Массивы элементов
  • Построение тел вращения
  • Получение проекционных чертежей
  • Плоскостное моделирование
  • ПРИЕМЫ РАБОТЫ С ДОКУМЕНТАМИ
  • ПРИЕМЫ СОЗДАНИЯ ОБЪЕКТОВ
  • СОЗДАНИЕ ГЕОМЕТРИЧЕСКИХ
    ОБЪЕКТОВ
  • ПРОСТАНОВКА РАЗМЕРОВ
  • ПРИМИТИВЫ
  • СОПРЯЖЕНИЯ
  • ФЛАНЦЫ
  • ПЛОСКАЯ МОДЕЛЬ
  • КРЕПЕЖНЫЕ ИЗДЕЛИЯ.
  • ВОЗМОЖНОСТИ СРЕДЫ.
    ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС
  • Выполнение чертежей
  • ПОСТРОЕНИЕ ЛИНИЙ ЧЕРТЕЖА.
  • ПОСТРОЕНИЕ ВИДОВ ДЕТАЛИ
  • ПОСТРОЕНИЕ ПЛОСКОЙ ДЕТАЛИ
    ПО ЧАСТИ ИЗОБРАЖЕНИЯ
  • ПОСТРОЕНИЕ ВИДОВ ПО МОДЕЛИ
  • Твердотельное моделирование
  • Построение модели детали «Ребро»
  • Параметризация модел
  • Построение чертежей на базе
    трехмерных моделей деталей
  • Системы координат
  • СПОСОБЫ ВВОДА КООРДИНАТ
  • ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
  • Пример расчета посадки с натягом
  • РАСЧЕТ ПЕРЕХОДНЫХ  ПОСАДОК
  • ПОСАДКИ ПОДШИПНИКОВ  КАЧЕНИЯ
  • ВЫБОР ПОСАДОК  ДЛЯ ШПОНОЧНЫХ 
    СОЕДИНЕНИЙ
  • ВЫБОР ПАРАМЕТРОВ  РЕЗЬБОВЫХ 
    СОЕДИНЕНИЙ
  • РАСЧЕТ РАЗМЕРНЫХ  ЦЕПЕЙ
  •  

    Бетонная шахта реактора.

    Состав и общее описание.

    Реактор в сборе устанавливается в бетонной шахте, оборудование которой обеспечивает биологическую защиту от излучений со стороны активной зоны, надежное крепление реактора с учетом сейсмического нагружения и тепловую изоляцию по наружной поверхности.

    На рис. 28 показан шахтный объем реактора ВВЭР-1000.

    Шахта выполняется из обычного бетона и имеет закладные металлические детали для крепления оборудования шахтного объема.

    Бетонная шахта реактора разделительным сильфоном на два объёма: верхний, заполняемый водой при перегрузке топлива и ревизии оборудования внутрикорпусных устройств (бассейн мокрой перегрузки – БМП) и нижний, условно разделённый опорной фермой на два объёма: на шахту зоны патрубков и на шахту цилиндрической части корпуса реактора.

    Бетонная шахта через транспортный коридор, снабженный гидрозатвором, соединена с бассейном выдержки и перегрузки.

    Конструктивное исполнение гидрозатворов построено на принципе уплотнения резинового элемента гидрозатвора. Гидрозатворы выполнены с двухсторонним действием, т.е. предусматривается раздельное заполнение бассейна выдержки и перегрузки или бетонной шахты реактора с шахтами ревизии. На энергоблоке с реактором ВВЭР-1000 бетонная шахта, в сторону, противоположную расположению гидрозатвора, переходит в коридор над шахтами ревизии БЗТ и шахты реактора, образуя единый объем, который заполняется борным раствором для перегрузки внутрикорпусных устройств реактора или для перегрузки топлива. В бетонную шахту (до бетонирования) закладываются две анкерные тяги в районе расположения гидрозатвора с выходом на отметку 36,9 м, предназначенные для проведения очередных испытаний кругового крана защитной оболочки, а также предусматриваются кабельные коридоры для СУЗ и системы внутриреакторного контроля, воздуховоды рециркуляционных систем.

    В зоне патрубков находится защита тепловая зоны патрубков корпуса реактора и биологическая защита реактора (см. рис. 29).

    В шахтном объёме цилиндрической части расположена «сухая» биологическая защита, защита тепловая корпуса реактора и передвижной манипулятор наружного контроля корпуса и днища реактора.

    Оборудование бетонной шахты реактора состоит из следующих сборочных единиц:

    ● Детали закладные;

    ● Ферма опорная;

    ● Каналы измерительные ядерные;

    ● Защита тепловая цилиндрической части корпуса реактора;

    ● Сильфон разделительный;

    ● Защита тепловая зоны патрубков корпуса реактора;

    ● Защита биологическая;

    ● «Сухая» биологическая защита.

    Детали закладные.

    Детали закладные бетонной шахты предназначены для установки и закрепления реактора в бетонной шахте, проходок под кабели, воздушников, трубок контроля протечек. Представляют собой прямоугольные, кольцевые плиты или сварные конструкции, крепящиеся в бетоне с помощью анкерных стержней, а также трубы для проходок. К деталям закладным с помощью сварки или резьбовых соединений крепится оборудование шахты ядерного реактора. Нагрузки от оборудования передаются на закладные детали и, через анкерные стержни, воспринимаются бетоном. Детали закладные, выступающие из бетона, соприкасаются с воздушной средой шахты. Во время перегрузки реактора закладные детали, расположенные выше разделительного сильфона, соприкасаются с водой первого контура.

    К закладным деталям бетонной шахты относятся:

    ● Трубы для проходок (кабелей датчиков систем ВРК, СУЗ; оборудования системы АКНП; воздушника реактора; контроля протечек ГРР и ВБ);

    ● Секторы для установки и закрепления БЭР реактора;

    ● Короба для крепления направляющих приспособления для центровки ВБ;

    ● Патрубки для отвода охлаждающего воздуха от ВБ и корпуса реактора;

    ● Опора, кронштейны для крепления упорного кольца и разделительного сильфона;

    ● Чехлы для установки температурных датчиков;

    ● Обечайки для установки и крепления опорной фермы;

    ● Листы для установки защиты тепловой корпуса реактора,

    ● Рельсы передвижного манипулятора подсистемы наружного контроля корпуса и днища реактора (по рельсам манипулятор передвижной перемещается из депо в подреакторное помещение);

    ● Блоки «сухой» биологической защиты;

    ● Облицовка бассейна мокрой перегрузки реактора.

    Ферма опорная.

    Ферма опорная предназначена для установки и закрепления реактора в бетонной шахте и является частью биологической защиты реактора.

    Как уже было отмечено выше, опорная ферма разделяет нижнюю часть шахтного объема на две шахты: зоны патрубков и цилиндрической части корпуса реактора.


    Опорная ферма представляет собой сварную конструкцию, состоящую из 30 радиально расположенных балок коробчатого сечения. Наружные концы балки объединены жёсткой обечайкой. В наружной части снизу балки объединены поясом. Балки представляют собой короб, разделённый на ячейки, заполненные засыпкой, играющей роль биологической защиты. В состав засыпки входят следующие компоненты: серпентинитовая галя, кристаллический карбид бора и дробь чугунная литая. В балке имеются отверстия для заполнения балок бетоном и для выхода воздуха при бетонировании. Полости между балками облицованы листом и заполнены серпентинитовым бетоном. Для прохода охлаждающего воздуха в этих полостях выполнены щели.

    Ферма опорная изготавливается из трёх транспортабельных секторов, которые собираются между собой на кронштейнах с помощью болтов и обвариваются.

    Ферма опорная воспринимает усилия от опорного кольца корпуса реактора. Нагрузки от реактора через кольцо опорное, клинья и шпонки передаются на балки фермы, а с балок фермы через объединяющий пояс – на внутреннее закладное кольцо и на стержни анкерные. Опорная конструкция реактора ВВЭР-1000 показана на рис.9, опорная ферма – на рис.30.

    Внуриблочные и межблочные пространства, заполненные серпентинитовым бетоном, играют роль биологической и тепловой защиты. При работе реактора ферма опорная охлаждается воздухом, который продувается через охлаждающие щели в межблочных пространствах и в кольцевых зазорах между каналом ионизационных камер и облицовочной трубой фермы опорной.

    Таблица 14 «Технические характеристики фермы опорной».

    № п/п

    Наименование параметров

    Значение

    Наружный диаметр, мм

    9600

    Внутренний диаметр, мм

    4585

    Высота, мм

    1310

    Количество секторов, шт.

    3

    Масса сектора, кг

    ~ 41000

    Срок службы, лет

    30

    Максимальная величина флюенса быстрых нейтронов с энергией выше 0,5 Мэв в месте заделки опорных балок в бетон за срок службы, не более, нейтрон/см2

    1,9·1016

    Реактор ВВЭР-1000 является водо-водяным энергетическим реактором корпусного типа